Semicontinuity of Convex-valued Multifunctions

نویسنده

  • Andreas Löhne
چکیده

We introduce semicontinuity concepts for functions f with values in the space C(Y ) of closed convex subsets of a finite dimensional normed vector space Y by appropriate notions of upper and lower limits. We characterize the upper semicontinuity of f : X → C(Y ) by the upper semicontinuity of the scalarizations σf( · )(y∗) : X → R by the support function. Furthermore, we compare our semicontinuity concepts with well-known concepts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Semicontinuity of Convex-valued Multifunctions and Cesari’s Property (Q)

We investigate two types of semicontinuity for set-valued maps, Painlevé–Kuratowski semicontinuity and Cesari’s property (Q). It is shown that, in the context of convexvalued maps, the concepts related to Cesari’s property (Q) have better properties than the concepts in the sense of Painlevé–Kuratowski. In particular, we give a characterization of Cesari’s property (Q) by means of upper semicon...

متن کامل

A degree-theoretic approach to solution stability of parametric generalized equations governed by set-valued maps

This paper is concerned with solvability and solution stability of parametric generalized equations governed by set-valued mappings. By a degree-theoretic approach for multifunctions, some new results on lower semicontinuity of the solution map to a parametric generalized equation are established.

متن کامل

Remarks on set valued integrals of multifunctions with non empty , bounded , closed and convex values ∗

We study the comparison between the Aumann and the Bochner integrals for integrably non empty bounded closed convex valued multifunctions in a separable Banach space when it is not possible to apply embedding theorems.

متن کامل

Characterizations of the Local Single-valuedness of Multifunctions

We characterize the local single-valuedness and continuity of multifunctions (set-valued mappings) in terms of their submonotonicity and lower semicontinuity. This result completes the well-known condition that lower semicontinuous, monotone multifunctions are single-valued and continuous. We also show that a multifunction is actually a Lipschitz single-valued mapping if and only if it is submo...

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005